Discrimination Power of Polynomial-Based Descriptors for Graphs by Using Functional Matrices
نویسندگان
چکیده
In this paper, we study the discrimination power of graph measures that are based on graph-theoretical matrices. The paper generalizes the work of [M. Dehmer, M. Moosbrugger. Y. Shi, Encoding structural information uniquely with polynomial-based descriptors by employing the Randić matrix, Applied Mathematics and Computation, 268(2015), 164-168]. We demonstrate that by using the new functional matrix approach, exhaustively generated graphs can be discriminated more uniquely than shown in the mentioned previous work.
منابع مشابه
New Polynomial-Based Molecular Descriptors with Low Degeneracy
In this paper, we introduce a novel graph polynomial called the 'information polynomial' of a graph. This graph polynomial can be derived by using a probability distribution of the vertex set. By using the zeros of the obtained polynomial, we additionally define some novel spectral descriptors. Compared with those based on computing the ordinary characteristic polynomial of a graph, we perform ...
متن کاملSome results on the polynomial numerical hulls of matrices
In this note we characterize polynomial numerical hulls of matrices $A in M_n$ such that$A^2$ is Hermitian. Also, we consider normal matrices $A in M_n$ whose $k^{th}$ power are semidefinite. For such matriceswe show that $V^k(A)=sigma(A)$.
متن کاملThe Discrimination Power of Structural SuperIndices
In this paper, we evaluate the discrimination power of structural superindices. Superindices for graphs represent measures composed of other structural indices. In particular, we compare the discrimination power of the superindices with those of individual graph descriptors. In addition, we perform a statistical analysis to generalize our findings to large graphs.
متن کاملModified Goal Programming Approach for Improving the Discrimination Power and Weights Dispersion
Data envelopment analysis (DEA) is a technique based on linear programming (LP) to measure the relative efficiency of homogeneous units by considering inputs and outputs. The lack of discrimination among efficient decision making units (DMUs) and unrealistic input-outputs weights have been known as the drawback of DEA. In this paper the new scheme based on a goal programming data envelopment an...
متن کاملNarumi-Katayama Polynomial of Some Nano Structures
The Narumi-Katayama index is the first topological index defined by the product of some graph theoretical quantities. Let G be a simple graph. Narumi-Katayama index of G is defined as the product of the degrees of the vertices of G. In this paper, we define the Narumi-Katayama polynomial of G. Next, we investigate some properties of this polynomial for graphs and then, we obtain ...
متن کامل